Mourre estimates for a 2D magnetic quantum Hamiltonian on strip-like domains

نویسندگان

  • Philippe Briet
  • Georgi Raikov
  • Peter Hislop
  • Eric Soccorsi
  • Peter D. Hislop
چکیده

We consider a 2D Schrödinger operator H0 with constant magnetic field defined on a strip of finite width. The spectrum of H0 is absolutely continuous and contains a discrete set of thresholds. We perturb H0 by an electric potential V , and establish a Mourre estimate for H = H0 + V when V is periodic in the infinite direction of the strip, or decays in a suitable sense at infinity. In the periodic case, for each compact subinterval I contained in between two consecutive thresholds, we show as a corollary that the spectrum of H remains absolutely continuous in I, provided the period and the size of the perturbation are sufficiently small. In the second case we obtain that the singular continuous spectrum of H is empty, and any compact subset of the complement of the thresholds set contains at most a finite number of eigenvalues of H, each of them having finite multiplicity. Moreover these Mourre estimates together with some of their spectral consequences generalize to the case of 2D magnetic Schrödinger operators defined on R for suitable confining potentials modeling Dirichlet boundary conditions. AMS 2000 Mathematics Subject Classification: 35J10, 81Q10, 35P20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral properties of a magnetic quantum Hamiltonian on a strip

We consider a 2D Schrödinger operator H0 with constant magnetic field, on a strip of finite width. The spectrum of H0 is absolutely continuous, and contains a discrete set of thresholds. We perturb H0 by an electric potential V which decays in a suitable sense at infinity, and study the spectral properties of the perturbed operator H = H0 + V . First, we establish a Mourre estimate, and as a co...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

D ec 2 00 7 DYNAMICAL RESONANCES AND SSF SINGULARITIES FOR A MAGNETIC SCHRÖDINGER OPERATOR

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First,...

متن کامل

0 71 0 . 05 02 v 3 [ m at h . SP ] 1 4 M ar 2 00 8 DYNAMICAL RESONANCES AND SSF SINGULARITIES FOR A MAGNETIC SCHRÖDINGER OPERATOR

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009